麦冬原花青素的提取工艺优化研究

周喜新 李 玲

(湖南农业大学生物科学技术学院,湖南长沙410128)

摘要:本文以麦冬果实为材料,以水为提取剂,选择微波辅助提取法,优化麦冬原花青素的提取工艺,用正交试验研究了提取温度、提取时间、料液比、微波作用时间对麦冬原花青素提取的影响。结果表明,其最佳提取工艺参数为:提取温度80℃、提取时间3 h、料液比1:20 和微波作用时间80s。

关键词: 麦冬; 原花青素; 大孔树脂; 分离纯化; HPLC

麦冬[Ophiopogonjaponicuss (Thunb.) Ker-gawl.]为百合科植物,属多年生常绿草本植物。球形浆果成熟时,为蓝绿色或黄褐色。麦冬块根可入药,味甘,微苦,性微寒,有滋阴益精、清心除烦、养阴益气、润肠通便等功效,麦冬块根富含甾体皂苷、多糖、黄酮等多种成分。原花青素(proanthocyanidin,PC)又称原花色素,为多酚类化合物,目前被作为防癌、防治心血管等疾病药物的功效成分,也可作为安全无毒的新型天然抗氧化剂、防腐剂使用,并在欧美等发达国家的食品、保健品、化妆品及医药领域中得到了广泛应用。现有文献对原花青素的研究,主要集中在葡萄、马铃薯、蓝莓、枸杞、无花果、紫玉米等植物,尚未见对麦冬果实中原花青素的提取工艺研究报道过。本文利用湖南麦冬果实资源,从中高效提取附加值高的原花青素,希望能更好地利用丰富的麦冬果实资源,可以解决资源浪费问题,能够变废为宝,对社会具有实际意义。

一、材料与方法

(一)实验材料

麦冬果实(采于湖南张家界内);原花青素标准对照品(95%) (湖南三为生物科技有限公司);乙腈、无水乙醇、香草醛、浓盐酸、 甲醇、乙酸乙酯、氯仿、丙酮、氢氧化钠。

(二)方法

1. 麦冬原花青素提取工艺

准确称取 2.00g 麦冬果粉于 100mL 具塞三角瓶中,按一定料液比加入最佳提取溶剂,放入 600W 微波炉中处理连续处理不同时间后取出,于不同温度的水浴锅中提取一定时间后,以 4000r/min 的速度离心 15min,取上清液定容至 100mL,备用。

2. 麦冬原花青素 HPLC 检测条件

麦冬原花青素的 HPLC 测定条件: LC-20AT 液相色谱仪(日本岛津),色谱柱为 C18 柱 $(4.6\times250$ mm, $5\,\mu$ m),流动相为乙腈 - 水(体积比为 15: 85),柱温为 $30\,^{\circ}$ 、进样量为 $20\,\mu$ L,流速为 1.0mL/min,检测波长为 280nm。

3. 麦冬原花青素提取工艺的优化

采用 4 因素 4 水平设计正交实验,因素水平安排见表 1,正 交试验及结果见表 2,方差分析见表 3。根据正交试验结果及方差 分析,确定麦冬原花青素的最佳提取工艺条件。

二、结果及分析

在水提取麦冬果中原花青素的正交试验在参考文献的基础上, 选择 4 个主要因素:温度(A)、提取时间(B)、料液比(C) 和微波处理时间(D)为研究对象,采用 4 因素 4 水平设计正交试 验来研究麦冬果中原花青素不同条件下提取的效果。以原花青素 提取液的吸光值为指标,L16(45)正交表如下所示:

表 1 正交试验因素水平

水平	A 温度 /℃	B 提取时间 /h	C 料液比 / (g/mL)	D 微波处理时间 /s
1	50	1: 15	1.5	60
2	60	1: 20	2	70
3	70	1: 25	2.5	80
4	80	1: 30	3	90

表 2 正交试验结果

			77 20 1-132 - 1111			
编号	A	В	С	D	误差	吸光值
1	1	1	1	1	1	0.178

教育论坛 131

教育前沿 Vol. 6 No. 9 2024

2	1	2	2	2	2	0.245
3	1	3	3	3	3	0.198
4	1	4	4	4	4	0.206
5	2	1	2	3	4	0.186
6	2	2	1	4	3	0.185
7	2	3	4	1	2	0.211
8	2	4	3	2	1	0.222
9	3	1	3	4	2	0.212
10	3	2	4	3	1	0.222
11	3	3	1	2	4	0.193
12	3	4	2	1	3	0.234
13	4	1	4	2	3	0.244
14	4	2	3	1	4	0.194
15	4	3	2	4	1	0.274
16	4	4	1	3	2	0.309
K1	0.830	0.820	0.865	0.817	0.896	
K2	0.804	0.846	0.939	0.904	0.977	
К3	0.861	0.876	0.826	0.915	0.861	
K4	1.021	0.971	0.883	0.877	0.779	
k1	0.207	0.205	0.216	0.204	0.224	
k2	0.201	0.212	0.235	0.226	0.244	
k3	0.215	0.219	0.207	0.229	0.215	
k4	0.255	0.243	0.221	0.219	0.195	
R	0.054	0.038	0.028	0.025	0.049	

表 3 正交试验方差分析

方差来源	偏差平方和	自由度	均方	F值	显著水平
A	0.007	3	0.0023	1.400	*
В	0.003	3	0.001	0.600	
С	0.002	3	0.0007	0.400	
D	0.001	3	0.0003	0.200	
误差	0.01	3			
总和	0.013	12			

通过对正交实验结果(表2)与方差分析结果(表3)进行分析,四个因素对麦冬原花青素吸光值的影响:由大到小,依次为温度>提取时间>料液比>微波处理时间,通过直观分析和极差分析,微波辅助水提取法提取麦冬原花青素的最优工艺方案为A4B4C2D3,即提取温度80℃、提取时间3h、料液比1:20和微波处理时间80s。

三、结论

通过对 3 种原花青素的提取方法选择,得到微波辅助提取法能提高麦冬果中原花青素的提取率。经过单因素试验和正交试验,分析得到从麦冬果实中提取原花青素的最佳提取工艺条件为:提取温度 80℃、提取时间 3h、料液比 1:20 和微波作用时间 80s。

参考文献:

[1] 于大猛,于葆墀,苏桂云,等.麦冬传统炮制工艺与京帮炮制经验探讨[J].浙江中医药大学学报,2024,48(6):741-746.

[2] 迟宇昊, 李暘, 申远. 麦冬化学成分及药理作用研究进展 [J]. 新乡医学院学报, 2021, 38 (02): 189-192.

[3] 王芳, 陈梦颖, 李晓怡, 等. 原花青素的食用安全性研究进展[J]. 沈阳药科大学学报, 2023, 40 (10): 1394-1400.

[4] 何秋玲,陈晓玉,杨申明,等. 无花果原花青素超声辅助 提取工艺优化及抗氧化性研究 [J]. 生物化工, 2024, 10 (04): 1-7+12.

Education Forum